4-cyanopyridine, a versatile spectroscopic probe for cytochrome P450 BM3.
نویسندگان
چکیده
The nitrogenous pi -acceptor ligand 4-cyanopyridine (4CNPy) exhibits reversible ligation to ferrous heme in the flavocytochrome P450 BM3 (Kd=1.8 microm for wild type P450 BM3) via its pyridine ring nitrogen. The reduced P450-4CNPy adduct displays unusual spectral properties that provide a useful spectroscopic handle to probe particular aspects of this P450. 4CNPy is competitively displaced upon substrate binding, allowing a convenient route to the determination of substrate dissociation constants for ferrous P450 highlighting an increase in P450 substrate affinity on heme reduction. For wild type P450 BM3, Kd(red)(laurate)=82.4 microm (cf. Kd(ox)=364 microm). In addition, an unusual spectral feature in the red region of the absorption spectrum of the reduced P450-4CNPy adduct is observed that can be assigned as a metal-to-ligand charge transfer (MLCT). It was discovered that the energy of this MLCT varies linearly with respect to the P450 heme reduction potential. By studying the energy of this MLCT for a series of BM3 active site mutants with differing reduction potential (Em), the relationship EMLCT + (3.53 x = Em 17,005 cm)(-1) was derived. The use of this ligand thus provides a quick and accurate method for predicting the heme reduction potentials of a series of P450 BM3 mutations using visible spectroscopy, without the requirement for redox potentiometry.
منابع مشابه
Novel haem co-ordination variants of flavocytochrome P450BM3.
Bacillus megaterium flavocytochrome P450 BM3 is a catalytically self-sufficient fatty acid hydroxylase formed by fusion of soluble NADPH-cytochrome P450 reductase and P450 domains. Selected mutations at residue 264 in the haem (P450) domain of the enzyme lead to novel amino acid sixth (distal) co-ordination ligands to the haem iron. The catalytic, spectroscopic and thermodynamic properties of t...
متن کاملFluorescence detection of ligand binding to labeled cytochrome P450 BM3.
The cytochrome P450 superfamily of monoxygenases are highly relevant for pharmaceutical, environmental and biocatalytical applications. The binding of a substrate to their catalytic site is usually detectable by UV-vis spectroscopy as a low-to-high spin state transition of the heme iron. However, the discovery of potential new substrates is limited by the fact that some compounds do not cause t...
متن کاملSubzero-temperature stabilization and spectroscopic characterization of homogeneous oxyferrous complexes of the cytochrome P450 BM3 (CYP102) oxygenase domain and holoenzyme.
We describe herein for the first time the formation and spectroscopic characterization of homogeneous oxyferrous complexes of the cytochrome P450 BM3 (CYP102) holoenzyme and heme domain (BMP) at -55 degrees C using a 70/30 (v/v) glycerol/buffer cryosolvent. The choice of buffer is a crucial factor with Tris [tris(hydroxymethyl)aminomethane] buffer being significantly more effective than phospha...
متن کاملSteroids hydroxylation catalyzed by the monooxygenase mutant 139-3 from Bacillus megaterium BM3
The search of new substrates with pharmaceutical and industrial potential for biocatalysts including cytochrome P450 enzymes is always challenging. Cytochrome P450 BM3 mutant 139-3, a versatile biocatalyst, exhibited hydroxylation activities towards fatty acids and alkanes. However, there were limited reports about its hydroxylation activity towards steroids. Herein, an Escherichia coli-based w...
متن کاملMetabolism related toxicity of diclofenac in yeast as model system.
Diclofenac is a widely used drug that can cause serious hepatotoxicity, which has been linked to metabolism by cytochrome P450s (P450). To investigate the role of oxidative metabolites in diclofenac toxicity, a model for P450-related toxicity was set up in Saccharomyces cerevisiae. We expressed a drug-metabolizing mutant of cytochrome P450 BM3 (BM3 M11) in yeast. Importantly, BM3 M11 yielded si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 47 شماره
صفحات -
تاریخ انتشار 2004